BASIC
COMPILER

For the ATARI 400/800® Computer

By
Phillip Dennis
© Special Software Systems

Copyright © 1983

®
Da Inee
PERSONAL COMPUTER SOFTWARE

9421 Winnetka Avenue
Chatsworth, CA 91311

ALL RIGHTS RESERVED

ATARI is a registered trademark of ATARI Inc.
Percom is a registered trademark of Percom Data Co., Inc.
DATASOFT is a registered trademark of Datasoft Inc.

TABLE OF CONTENTS

I OVERVIEW ... e et e 1
The Compiler Program Diskette 1
Requirements i i 2

Il. HOW TO COMPILE APROGRAM 2
Single-Drive System 2
Two-Drive System ... 2

THE COMPILER AND DOS OPTIONS 3
Which to Use, COMPILER or DOS? 3
COMPILER OPTION. ..o 3
BASIC FILE and OBJECT FILE 4
Integer or Floating Point Arithmetic 4
HOW THE COMPILERWORKS 4
PASS 1 . 4
THE SYSTEMRESETKeyoovviiiiiiie ... 5
PASS 2 . 5
PASS B . e 6
PASS 4 . 6
The SYSTEM RESET Key........covviviiiinn.... 6
Line Reference Map ..., 7
Run Program i, 8
1. Decimal Address Run.................ccuu... 8

2. Rerun Program From Beginning............... 8
3.DOSControl ...ooiiii 8
DOS . e 9
DOS OPTION ..ot e et e 9
Transferring Compiler Support Files............... 9
Loading the BASIC COMPILER From DOS 10
. TECHNICALNOTESttt 10
Integer/Floating Point Arithmetic Option 10
Compiler Files ...t 1
Disk Space Requirements.......................... 13

Assembler Program Control Statements 14

IV. COMPILER ERRORS i 14
System Errors.......oii 14
Programming Errors........... 16
Compile-time Errors, 16
Assembler System Error 19
Run-time Errors ... 19
TABLE OF RUN-TIME ERRORS 23

V. OPTIMIZING YOUR BASIC PROGRAM 24
Timing Considerations 24
How to Produce Smaller Compiled Programs 24

VI. DIFFERENCES BETWEEN COMPILED AND

INTERPRETED BASIC ..., 27
Commands Not Recognized by the Compiler 27
StringHandling i 27
FOR LOOPS .vviiie it 28
GOTO and GOSUB Variable Line Numbers........ 28
DATA Statements, 29
Memory Between VSEC and VEND................ 29

GLOSSARY .. 30

APPENDIX A .o 31

APPENDIX B ... 32

APPENDIX C ... e 33

COMMERCIAL SALE OF COMPILED PROGRAMS34

ATARI BASIC COMPILER

I. OVERVIEW

DATASOFT proudly presents the first compiler for the ATARI
computer! The BASIC COMPILER is a useful tool for those who
want the speed of a machine language program and the ease of
BASIC programming. You have the advantage of writing your
program in BASIC and compiling it into machine language to
run at lightning speed. Knowledge of assembly or machine
language is NOT required.

The ATARI BASIC COMPILER is a four-pass compiler which
generates 6502 machine language. During Pass 1 the Compiler
translates your BASIC program into assembler files. Passes
2, 3, and 4 utilize an assembler to assemble the files generated
in Pass 1into machine language. All assembler files and the final
compiled program are saved on your disk.

As an added benefit to the advanced assembly language pro-
grammer, the Compiler produces DATASM compatible
assembler files which can be utilized with other assembler
programs.

This manual contains an index for quick reference, as well as a
glossary to help familiarize you with the use of some words.

The Compiler Program Diskette
The program diskette contains the following files:

DUP.SYS

DOS.SYS

AUTORUN.SYS—Title Page Program
BASCOMP.OBJ—The BASIC COMPILER
ASM.OBJ—The Assembler
SYSEQU.ABC—Run-time Library Equate file
SYSLIB.FP—Floating Point Run-time Library
SYSLIB.INT—Integer Run-time Library

The Compiler program (BASCOMP.OBJ), assembler program
(ASM.OBJ), and the support files (run-time libraries) are
described in Part Ill. Please do not remove the write protect
tab from the BASIC COMPILER diskette.

Requirements

ATARI 400/800 computer—48K

ATARI BASIC cartridge

ATARI 810 or Percom disk drive (one or more)

diskette with your BASIC program (DOS.SYS, DUP.SYS
optional)

® Printer (optional)

NOTE: The BASIC COMPILER requires that your BASIC pro-
gram be structured within certain constraints. Please see Section
HI*TECHNICAL NOTES" and Section IV “COMPILER ERRORS”
before attempting to compile your program. By reviewing this
information and revising your program as needed, you will
minimize “Compiler errors” and the necessity to interrupt the
compilation process to make changes.

II. HOW TO COMPILE A PROGRAM
Single-Drive System

Remove the BASIC cartridge from the computer and turn the
computer off. Close the door on your disk drive and turn it on.
After the red busy light on your drive goes off, insert the BASIC
COMPILER program diskette and close the drive door. Turn on
the computer. (NOTE: If you forget to remove the BASIC car-
tridge the program will not boot and the message “REMOVE
CARTRIDGES AND REBOOT” will be displayed.)

Two-Drive System

If you have a two-drive system you will need to make a copy of the
BASIC COMPILER program diskette before you begin.

Follow the instructions for a single-drive system, but in addition
to inserting the BASIC COMPILER diskette into drive #1, insert
a blank, formatted disk into drive #2. Turn on the computer.
The program disk in drive #1 will boot and the title page will be

displayed. Select the DOS option on the title page. After the DOS
menu appears on the screen utilize “J” on the menu to duplicate
the entire program diskette. (NOTE: The Compiler program
(BASCOMP.OBUJ) will not be functional on the duplicate copy.)
After the BASIC COMPILER program diskette is duplicated,
reboot the system. After the title page appears, remove the
BASIC COMPILER disk from drive #1 and replace it with the
duplicate program disk. Insert the disk containing your BASIC
program (BASIC program work disk) to be compiled in drive #2.

THE COMPILER AND DOS OPTIONS

After the disk is booted the title page will be displayed with the
following options:

COMPILER or DOS?

Which to Use, COMPILER or DOS?

If you have a single-drive system the COMPILER option requires
you to swap the BASIC COMPILER program disk with your
BASIC program work disk (containing your BASIC program
to be compiled) five times. (NOTE: If you have a two-drive
system all disk swapping is eliminated. You may proceed directly
to the COMPILER OPTION instructions below.)

If you are familiar with using DOS—the disk operating system
(and disk maintenance) which allows you to save and load files
or programs—you should select the DOS option described on
page 9. Utilizing DOS will allow you to copy any or all of the
Compiler support files and the assembler program from the
BASIC COMPILER program disk to your disk, thus eliminating
most or all disk swaps.

COMPILER OPTION

Press C and the Compiler program will load automatically. After
the program is loaded, you will be prompted to insert your BASIC
program work disk. You will then be prompted to type your
BASIC program file name. To see a catalog of the disk in drive
#1 before you type the file name, press RETURN.

BASIC FILE and OBJECT FILE

Type in the name of the BASIC file on your disk you want to
compile and press RETURN. You will then be prompted to type
in the object file which is the name you want to give the compiled
program. It is suggested you use the same name as your BASIC
program but with a different extension such as “.OBJ” (for
object file).

If you try to compile a non-BASIC file you will be prompted
“FILENOT BASIC” and reprompted to type in a BASIC file name.

NOTE: On a two-drive system if your BASIC file and object
file are in drive #2, you must specify “D2:".

Integer or Floating Point Arithmetic?

After typing in the object file name, you will be asked if you want
the Compiler to use integer or floating point arithmetic. Pressing
F RETURN will instruct the program to use floating point
arithmetic (the same as the BASIC cartridge). Answering with an
| RETURN will instruct the program to use 16-bit integer
arithmetic.

Such a program will run 5 to 20 times faster than the original
BASIC program. However, some BASIC statements perform
differently when the integer option is used. These differences
are explained in Part Ill.

HOW THE COMPILER WORKS

PASS 1

After either the integer or floating point options are selected,
the Compiler assembles each line of your BASIC program,
creates assembler files (ASSEM.SG1, SG2, etc.), writes them
on your disk (in drive #1), and displays a list of the BASIC line
numbers to be compiled. (The SG1, SG2, etc. file name exten-
sions refer to file segments which are numbered consecutively

as they are written to your disk.) For example:

<BC> COMPILING LINE 110

<BC> COMPILING LINE 120

<BC> COMPILING LINE 130
etc.

After the assembler files have been generated the Compilerlooks
for the assembler (ASM.OBJ) and, if you have not transferred
this file to your BASIC work disk, will display the message:

<BC> END__OF__PASS1

INSERT COMPILER DISK INTO DRIVE #1
THEN PRESS RETURN

Remove your BASIC work disk and reinsert the Compiler
program disk and press RETURN.

During, or at the end of, each pass the Compiler looks for
particular files to execute the next step in the compilation
process. Therefore, you will either be prompted to insert the
BASIC COMPILER program diskette or to “insert disk with
file...” Remember, the amount of prompts and the required
disk swapping will depend on whether or not you transfer any
Compiler files to your BASIC work disk.

Note: To avoid disk swapping you may transfer the necessary
files from the BASIC COMPILER program disk to your own by
utilizing the DOS Option at the beginning of the program. See
Page 9 for information on transferring the Compiler files.

The SYSTEM RESET Key

Pressing this key during PASS 1 will return the program to the
beginning of PASS 1.

PASS 2

After completion of PASS 1, the Compiler will load and execute
the assembler program (ASM.OBJ) which translates the
assembler files to executable machine language. The assembly
process requires three passes which are numbered PASS_2,

PASS_3, and PASS_4. As the assembler completes each of its
passes it will update the screen with:

<BC> PASS_2, etc.

The assembly process may require more time for longer
programs. To let you know that your computer and the assembler
are operating, a cursor will be flashing in the upper left corner
of the screen.

PASS 3

At the end of PASS 2 the Compiler looks for the assembler files
(ASSEM.SG1, SG2, etc.). Since these files were written to your
BASIC work disk the screen will display the file name and
prompt you to insert the correct disk as shown below.

<BC> PASS_2

Can't find file— >D:ASSEM.SG1
Please Insert Correct Disk

PRESS ANY KEY TO CONTINUE

After pressing any non-function key PASS 3 will begin. PASS 3
requires the SYSEQU.ABC file and you will be prompted to
insert the disk (BASIC COMPILER program disk) which
contains this file. (NOTE: Utilizing the DOS option to transfer
this file to your BASIC work disk will eliminate this and the
following disk swap.)

PASS 4

PASS 4 requires the assembler files again. Therefore, at the end
of PASS 3 you will be prompted to insert the disk WhICh contains
this file (your BASIC work disk).

The SYSTEM RESET Key

Pressing this key during Passes 2, 3, or 4 will abort the assembly
process and return control to DOS.

After PASS 4 is completed your BASIC program will be compiled

into machine language and saved to your disk in auto-runnable
form with the file name you initially selected. The screen will
now display three options:

Print line map
Run program
Dos

Line Reference Map

The reference map provides a useful tool for the programmer
who may need to know where a BASIC line number resides in
the compiled program. You can also use the reference map to
determine the size of the compiled program. (This is done by
finding the address of the Compiler generated line number
“99999.” The address of this line is the last memory location
used by the compiled program.)

Press P if you want to see the reference map. You will then be
prompted to select where you want the map printed, either to
your printer or screen, or written to your disk.

To:

Printer
Screen
Disk

Press the appropriate letter and RETURN for the desired option.
If you select the Screen option, press CTRL 1 to start and stop
the scrolling on the display.

Save to Disk

If you want to save the reference map to your disk, press D. You
will be prompted for the drive number and file name as shown:

DEVICE:FILENAME?—>

Type in the drive # which contains the disk you want the map
written to, and then specify the file name you want to give the
reference map. Press RETURN and the map will be saved to your
disk under your specified file name.

After the map has been displayed on your screen, printed out,
or saved to disk the “Select Option” prompt will reappear.

Run Program

Press R to run your compiled program. After the program is
finished and no errors have occurred, the message

BASIC exit

will be displayed. The run-time library (floating point or integer,
depending upon your initial selection in Pass 1) is now in control
and will display the message:

?Run address>

You may now execute one of three options: 1) rerun program
at a specific decimal address, 2) rerun the entire program, or
3) yield control to DOS. If you select the last option, make sure
the disk in drive #1 contains the file DUP.SYS.

1. Decimal Address Rerun

By typing a specific decimal address of one of the BASIC line
numbers in your compiled program after the prompt “?Run
address>,” you may rerun the program at that address. The
method for determining memory addresses is described under
Section IV “Run-Time Errors.”

2. Rerun Program From Beginning
Press RETURN to rerun the entire compiled program.

3. DOS Control

Alternatively, typing “DOS"” will yield control to DOS. If you
type “DOS” be sure you have the file “DUP.SYS” on the disk
presently in drive #1.

All the compiled programs generated by the BASIC COMPILER
are saved in “auto-runnable” form. This means that if you load
the program using the BINARY LOAD function (“L” on the DOS
menu), it will run automatically after it is loaded.

DOS

You may go directly to DOS after PASS 4is complete by pressing
D.

DOS OPTION

Press D to display the DOS menu. To see a directory of .the
Compiler program diskette, execute the “A” option. Yourdiskette
will contain the following Compiler-related files.

DUP.SYS
DOS.SYS
BASCOMP.OBJ
ASM.OBJ
SYSEQU.ABC
SYSLIB.FP
SYSLIB.INT

Transferring Compiler Support Files

As mentioned previously, you may want to transfer some or all
of the Compiler support files and the assembler program to your
diskette which contains your BASIC program to reduce disk
swapping. However, you may not want to transfer all of these
files as they will occupy too much disk space if you want to
compile large BASIC programs.

For a single drive system SYSEQU.ABC is the only compiler
support file you really need to transfer. The presence of this file
on your disk will eliminate all disk swapping except for two
required during Passes 1 and 2.

To eliminate all disk swapping you may transfer the system
run-time libraries (SYSLIB.FP, SYSLIB.INT), the system equate
file (SYSEQU.ABC), and the assembler (ASM.OBJ) to your
diskette. The Compiler (BASCOMP.OBJ) is copy-protected and
can be transferred but it will be inoperable on the duplicated disk.

To transfer any of the above files to your disk on a single-drive
system use “O” (DUPLICATE FILE) on the DOS menu. In a two-
drive system, use “C” (COPY FILE). To duplicate the entire
disk, use “J” (DUPLICATE DISK).

If you transfer only some or none of these files, and if the
Compiler or assembler cannot locate the files they need to
execute a particular phase of the compilation process, you will
be prompted to insert the disk containing the required file. For
example, if the assembler file (ASM.OBJ) was not copied to
your BASIC work disk you will be prompted with:

Can’t find file— >D:ASM.OBJ
Please Insert Correct Disk

PRESS ANY KEY TO CONTINUE

Please see Section lll for a more detailed discussion on the
Compiler files before you begin transferring them.

Loading the BASIC COMPILER From DOS

You may also load the BASIC COMPILER program directly from
DOS by selecting the “L” option (BINARY LOAD) on the DOS
menu. After pressing L RETURN you will be prompted with:

LOAD FROM WHAT FILE?

Type in BASCOMP.OBJ (the Compiler) and press RETURN. The
Compiler will be automatically loaded. From this point forward
follow the COMPILER Option instructions beginning with
“BASIC FILE and OBJECT FILE” (Section ll, on page 4).

I1l. TECHNICAL NOTES

Integer/Floating Point Arithmetic Option

For the ATARIU, floating point arithmetic is the standard method
for performing all arithmetic functions. If you select integer
arithmetic the Compiler program will insert a copy of the integer
run-time package into the compiled program. This package
performs identically to the floating point run-time package

except any calls to the transcendental functions will produce
a run-time error. These functions include:

SQR, COS, SIN, CLOG, LOG, EXP, and ATAN.

The RND (random) function also operates differently with

10

integer arithmetic. In the integer option
RND(X)

will return a random integer between 0 and x-1 inclusive. For
example:

RND(4)
will return a 0, 1, 2, or a 3. If you select the integer option also be
sure that your program does not contain any fractional constants
(e.g., 0.25). Such constants will be converted to integers resulting

in a compiled program that will not perform the same as the
original BASIC program.

Finally, even though a program compiled using the integer
option can only generate numbers in the range from -32768 to
32767, constants embedded in your program for performing
important PEEKs and POKEs will still generate the correct
address. For example:

A=PEEK(53279)

will correctly read the console buttons OPTION, SELECT, and
START. However:

PRINT 53279

will print as -12257, which is 53279-65536.

Compiler Files

The BASIC COMPILER program consists of two groups of files
including the Compiler program segments and the Compiler
support files.

All of the Compiler programs are identified by the .OBJ filename
extension. The files are:

BASCOMP.OBJ —The Compiler (PASS 1)

ASM.OBJ —The Assembler (PASS 2, 3, and 4)

1"

The Compiler support files include:

SYSEQU.ABC —The Run-time Library Equate File (used by
the assembler)

SYSLIB.FP —The Floating Point Run-time Library

SYSLIB.INT —The Integer Run-time Library

ASSEM.SG1, —These are the actual assembler files in

ASSEM.SG2, DATASM compatible mnemonics. The SG1,

etc. SG2, etc, extensions represent segments
1, 2, etc.

Note: The Compiler and assembler programs assume that the
first three support files are located on a diskette in drive #1.
Also, the assembler files (ASSEM.SG1, SG2, etc.) are always
written to drive #1, i.e. they always have the device specification
D1..

SUGGESTED DRIVE LOCATIONS
OF COMPILER FILES FOR A
SINGLE OR MULTIPLE-DRIVE SYSTEM

File Drive Number

SYSLIB.INT 1

SYSLIB.FP 1
SYSEQU.ABC 1
ASSEM.SG1,SG2, etc. 1

ASM.OBJ 1,2,3,0r4
BASIC program

to be compiled 1,2,3,0r4
Obiject file 1,2,3,0r4

12

For a two-drive system an optimal diskette configuration is listed
below.

File Drive Number

ASM.OBJ 1or2
BASIC program

to be compiled 2
Obiject file 2
SYSEQU.ABC 1
SYSLIB.INT 1
SYSLIB.FP 1

Disk Space Requirements

The assembler files (ASSEM.SG1, SG2, etc.) require approx-
imately five times as much disk storage as the BASIC program.
The final executable file requires approximately the same
amount of storage as the BASIC file. Therefore, you should
make sure that the diskette you are using with the Compiler
has at least as many free sectors equal to six times the size
of the BASIC program which you want to compile. The largest
BASIC program which can be compiled on a single drive system
is 100 sectors. 6 x 100 sectors + 100 sectors (original program) =
700 sectors.

The following data from an actual compilation of a 123-line
BASIC program demonstrates the disk space requirements.

BASIC source

file size: 42 sectors
ASSEM.SG1: 104 sectors
ASSEM.SG2: 81 sectors

object file size
(compiled program
including run-time): 89 sectors

TOTAL: 316 sectors

13

Assembler Program Control Statements
The programmer who understands assembly language and
wants to use or modify any assembler files (ASSEM.SG1, SG2,
etc.) created by the Compiler should note that the following
assembler statements are recognized by the assembler pro-
gram (ASM.OBJ).

Program Control Statements:

.END ends the assembly

.FILE chains two or more files in an assembly

Symbol and Data Definition Statements:

= defines a symbol

.BYTE defines byte oriented data in memory

.WORD defines address constants

.DBYTE defines word oriented (16 bits) data in memory
Also, the high byte of symbols is denoted by the greater than sign
(>)andthe low byte of a symbol with the less than (<) sign.
IV. COMPILER ERRORS
Errors that occur during the compilation of a BASIC program
are “compile-time” errors. They may be due to errors in the
BASIC program which is being compiled or due to ATARI system
errors. Errors that occur while running a compiled program
are “run-time” errors. If an error occurs an error message will
be displayed and you may proceed as described.
System Errors
If an ATARI system error number is displayed, consult your
BASIC or ATARI manual for a description. The following system

errors, including BASIC programming errors, may also occur
during PASS 1.

14

SYSTEM ERROR—CAN'T RUN ASSEMBLER
COMPILATION ABORTED
PRESS RETURN TO CONTINUE

Cause: The Compiler has encountered a bad ASSEMBLER file
(D:ASM.OBJ). This usually means you have a damaged disk.

Recovery: Restore your Compiler disk from a backup copy.

BAD FREE TEMP
COMPILATION ABORTED
PRESS RETURN TO CONTINUE

Cause: There is an internal Compiler inconsistency. The
Compiler has attempted to deallocate storage from the
temporary results stack when no storage was actually allocated.

Recovery: Reboot the Compiler and try to recompile your
program.

BAD INPUT FROM BASIC FILE
COMPILATION ABORTED
PRESS RETURN TO CONTINUE

Cause: The Compiler has encountered an unexpected character
in the BASIC program. This can be indicative of a damaged file.

Recovery: Try to execute the program from BASIC. If the
program appears to execute properly, perform the following
steps.

LIST “D:TEMP.TXT
NEW

ENTER “D:TEMP.TXT"
SAVE “D:XXX.BAS”

Now rerun the Compiler.

If any of the above errors occur your only option is to press
RETURN to continue. The Compiler will relinquish control to
DOS. Therefore, you should make sure your diskette in drive
#1 contains a copy of DUP.SYS and DOS.SYS before pressing
RETURN.

15

Programming Errors

When the Compiler encounters one of the programming errors
listed below, it will display the error message followed by the
line:

SKIPPING STATEMENT
CONTINUE OR ABORT (C/A)?

Pressing C permits PASS 1to continue, thus allowing all possible
programming errors in the BASIC program to be detected. The
Compiler will skip the statement containing the error and
continue the compilation at the next statement in the BASIC
program. At the end of PASS 1, if any errors occurred the
following message will be displayed.

X ERROR(S) DETECTED
X is the total number of errors which were detected. At this
point, the Compiler will stop,requiring you to reboot the system.
Turn the computer off, insert your BASIC cartridge and correct
the errors. Recompile your program.

If you press ARETURN in response to the CONTINUE or ABORT
question, control will be returned to DOS.

Compile-time Errors

ILLEGALLY PLACED STATEMENT

Cause: The Compiler has encountered a non-DATA statement
after DATA statements.

Recovery: Move the non-DATA statement(s) to lines numbered
lower than all DATA statements.

ILLEGAL NEXT

Cause: A NEXT is trying to increment a loop variable which does
not match the variable in the corresponsing FOR statement.

16

Example:

Incorrect: FOR I=1 TO 10:NEXT J
Correct: FOR I=1 TO 10:NEXT |

Recovery: Correct the NEXT statement.
DYNAMIC DIM NOT ALLOWED

Cause: A DIM statement must use constants instead of variables
to allocate array and string storage. Example:

DIM X(A), Y(2*A), Z(A+3)
Recovery: Replace the DIM statement with one which uses
constants. For example, if A equals 2 in the above statement
make the replacement such that the statement reads DIM X(2),
Y(4), Z(5).
NEXT WITHOUT FOR

Cause: The BASIC program contains a NEXT statement without
a matching FOR statement.

Recovery: Remove the NEXT or insert the appropriate FOR.
RE-DIMENSION ERROR

Cause: A string or array appears in more than one DIM statement.
The second will be ignored.

Recovery: Remove the extra DIM statement.
SYNTAX ERROR

Cause: The BASIC program contains a misspelled BASIC word,
is missing a comma, or quote marks, etc.

Recovery: Correct the syntax error using BASIC and recompile.
CAN'T COMPILE STATEMENT

Cause: The BASIC program contains statements such as “100

17

LIST” not supported by the Compiler.
Recovery: Remove the inappropriate statements.

UNDIMENSIONED ARRAY

Cause: The Compiler has encountered a statement containing a

doubly subscripted array (e.g. A(8, 12)) before its DIM or COM
statement.

Recovery: Move the array’'s DIM statement to a line number
lower than all lines which reference the array.

UNDEFINED LINE NUMBERS

Undefined line numbers in your BASIC program are trapped
during PASS 3 by the assembler. For example, if your BASIC
program contains the statement:

100 GOTO 1000

and there is no line numbered 1000, then the assembler will
respond by displaying the incorrect assembler instruction and
the line number which is undefined. For this example, the
assembler would display the message:

—>JMP L1000
<BC> System error
<BC> Ref: Line #— > 1000

<BC> Unresolved line number
Continue (Y/N)?

JMP L1000 is the assembler instruction and the line number is
1000. The assembler will ask you if you want to continue. Pressing
Y for “yes” will resume the assembly process and permit the
program to check for other possible undefined line numbers.
You should not try to run a program which contains undefined
line numbers. Running such a program will cause your computer
to stop if it reaches a statement containing an undefined line
number.

18

If you do not want to continue the assembly after an unresolved
line number, then just press N for “no.” Control will be returned
to DOS.

GOTO/GOSUB VAR or EXP

Cause: The BASIC program contains a GOTO/GOSUB to a
variable line number statement. Statements such as GOTO
1000 + X are not supported by the Compiler.

Recovery: Replace the GOTO/GOSUB statement by the
appropriate GOTO or GOSUB statement. For example:

ON X GOTO 1001, 1002,...
Assembler System Error

In addition to the normal ATARI system errors the following
system error can occur during PASSes 2, 3, and 4.

System error: 255

Cause #1: The assembler has encountered a reference which
is not defined in the system equate file. This usually means that
the file SYSEQU.ABC has been damaged.

Cause #2: The assembler cannot find the next assembler file
(ASSEM.SG1, etc.). This usually means that your assembler
files have been destroyed since they were created by PASS #1.
This should never occur, since a damaged file would normally
be trapped as an ATARI system error. It is also possible that the
Compiler itself (BASCOMP.OBJ) is damaged.

Recovery: Rerun the Compiler using different diskettes and
restore SYSEQU.ABC. If the Compiler does appear to be
damaged, you will need to contact DATASOFT for areplacement
disk.

Run-time Errors
Running a compiled program may produce the following run-

time errors. These errors are identical to the ATARI BASIC
error numbers. Any error number not listed is not produced

19

by the compiled version. The ATARI BASIC TRAP statement
works identically in the compiled version. Executing a
PEEK(195) will return the type of error encountered. If a TRAP
statement has not been executed or the trapping mechanism
is reset (as in TRAP 40000), then the run time package will
print the address of the inappropriate instruction. You may then
resume at a given address when the run time package prompts:

?Run address>

This address should be a decimal address corresponding to the
address of a BASIC line number as shown in the line reference
map. Instead of typing an address you can also enter one of the
following options.

e Type RETURN to rerun the program.

® Type DOS RETURN to abort the program completely and
return control to DOS.

* Type C RETURN to continue running the program beginning
from the line where the error occurred.

Example of Run-time Error

The following discussion shows how to determine the line
number at which a run-time error occurs. To determine the
line number you need a listing of the BASIC program and a
listing of the line reference map. Consider the following BASIC
program as an example.

100 REM

110 REM TEST RUN-TIME ERROR— >
120 REM

130 REM PROGRAM WILL GET AN
140 REM ERROR 11 WHEN (=0

150 REM

160 FOR I1=10 TO 0 STEP -1

170 PRINT 10/1

180 NEXT |

190 END

When run from BASIC the program produces the following

20

results.

1

111111111

1.25

1.42857142
1.66666666

2
2.5

3.33333333

5
10

ERROR—

READY

11 IN LINE 170

Compiling the program will produce the following line reference

map.

LINE # 100
LINE # 110
LINE # 120
LINE # 130
LINE # 140
LINE # 150
LINE # 160
LINE # 170
LINE # 180
LINE # 190
LINE # 99999

oo

12811
12811
12811
12811
12811
12811
12811
12825
12849

12882
12918

This map shows that the compiled code for line 170 resides
at memory addresses 12825 to 12848 inclusive.

21

When the compiled program is executed the following display
should result.

1
111111111
1.256
1.42857142
1.66666666
2

2.5
3.33333333
5

10

ERROR— 11
Trace:

12840

?Run address >

The compiled program reports an error 11 and then shows atrace
of addresses which show the sequence of subroutine calls which
led to the error. In this case no subroutines were called so the
trace just shows the address 12840. Since this address is between
the start and end address for line number 170 (as shown in the
line reference map) we conclude that line 170 is where the
error occurred.

22

TABLE OF RUN-TIME ERRORS

Error Number Definition
06 Out of data
11 Arithmetic error (OVERFLOW OR
DIVIDE BY ZERO)
18 Invalid string character
128 Break key abort
129 IOCB already open
130 Nonexistent device
131 I0CB write only
132 Invalid command
133 Device or file not open
134 Bad IOCB number
135 IOCB read only error
136 End of file
137 Truncated record
138 Device timeout
139 Device NAK
140 Serial bus error
141 Cursor out of range
142 Serial bus data frame overrun
143 Serial bus data frame checksum error
144 Device done error
145 Read after write compare error
146 Function not implemented
147 Insufficient RAM
160 Drive number error
161 Too many files open
162 Disk full
163 Unrecoverable system data /0 error
164 File number mismatch
165 File name error
166 POINT data length error
167 File locked
168 Command invalid
169 Directory full
170 File not found
171 POINT invalid

23

V. OPTIMIZING YOUR BASIC PROGRAM

Timing Considerations

Many programming applications require timing loops, either
to provide sychronization or small pauses during presentations.
Since compiled programs run faster, you should change your
timing parameters using the following information as a guide.

If you compile using the standard floating point package your
program will run approximately three times faster. You should
therefore make your timing loops about three times larger.

If you compile using the integer package, your program will
run approximately 15 times faster. Your timing loops should,
therefore, be about 15 times bigger.

As a quantitative example, the following FOR NEXT loop will
produce the indicated time delays.

100 FOR I=1 TO N:NEXT |

Program environment time delay seconds:

Uncompiled BASIC 0.0025 * N
Compiled FP 0.000975 * N
Compiled INT. 0.000195 * N

An alternative to delay loops is to use the system countdown
timers. Such delays will be the same whether interpreted or
compiled.

How to Produce Smaller Compiled Programs

The ATARI BASIC Compiler was designed to produce the
fastest possible machine code. Consequently, to achieve greater
speed, the code produced is typically longer than the uncom-
piled BASIC program. The size increase is usually 20% larger,
excluding the run-time package. For example:

100X=A+B

24

is compiled into:

L100

LDX # <A

LDY # >A

JSR LDO ; LOAD FP REG ZERO
LDX # <B

LDY # >B

JSR ADD ; ADD TO B

LDX # <X

LDY # >X

JSR STO ; STORE REG ZERO AT

which is a total of 21 bytes. The original BASIC line requires
10 bytes.

The statement:
100 GOSUB 2000
is compiled into:

L100
JSR L2000

which takes only 3 bytes.

Therefore, the key to producing compact code is to use sub-
routines liberally. Instead of repeating the statement:

...X=A+B

throughout your program (which requires 21 bytes per use),
replace it by a subroutine. Then each additional usage of
“X = A + B” will only require 3 bytes. If you maximize the use
of subroutines you will have a compiled program smaller and
faster than the uncompiled BASIC program.

Other BASIC statements which produce large compiled blocks -
include the following.

Substring expressions as in:

X$(1,J) etc.

25

Arrary references as in:
X =1
FOR NEXT loops with a variable step size. For example:

FOR1=1TO 100 STEP X

Next |
The NEXT | statement compiles into:

LDX # <I

LDY # >I

JSR LDO ; LOAD FP REG ZERO
LDX # <X

LDY # >X

JSR ADD ; ADD STEP SIZE
LDX # <I

LDY # >l|

JSR STO ; SAVE LOOP VARIABLE
LDA X

BMI *+13

LDX # <N100

LDY # >N100

JSR GT

BCS *+16

BCC *+11

LDX # <N100

LDY # >N100

JSR LE

BCS *+5

JMP A

The variable step size check requires 25 bytes. If the step size
were a constant, only 9 bytes would be needed.

26

Vi. DIFFERENCES BETWEEN COMPILED AND INTERPRETED
BASIC

Commands Not Recognized by the Compiler

BYE
CONT
CLOAD
CSAVE
DOS
ENTER
LIST
LOAD
NEW
SAVE

In addition:
RUN "FILESPEC"

is not recognized by the Compiler. RUN without a file name
causes the compiled program to be rerun from the beginning.

String Handling

The Compiler handles strings differently than the interpreter.

This difference will not be noticed if sub-string assignments
are not used as in:

AS$(l,J) = B$

The Compiler uses an end of line (EOL) byte (155) to indicate
an end of string. Thus, the assignment above will insert an
extra EOL byte into the A$ sub-string. If your program uses
sub-strings you should re-DIMension your strings to make
room for this additional byte.

As an example, suppose you want to store 12 character names
in a string variable called NAMES$ and you want to store 10
names. You should DIMension NAMES$ to 130 (i.e., 13 [the string
length + 1] x 10).

27

An added drawback of this feature is that a compiled program
cannot print CHR$(155) since the print routine quits when it
sees an EOL byte. If you have to send the EOL character (i.e.
CHR$(155)) to a device, you must use PUT as in:

PUT #1,155 or PRINT #1
If you must insert substrings use:

FOR J=1 TO LEN (B$)

POKE ADR(A$)+I+J-1, PEEK(ADR(B$)+J-1)

NEXT J
instead of A$(l,I+LEN(B$)-1)=B$.
FOR Loops

FOR loops can have only one NEXT. For example:

FOR 1=0 TO 10: IF X(1)=Y THEN NEXT |
PRINT X(1):NEXT |

is not allowed. If such a construct is in your program, you will
encounter the following compile-time error message when the
Compiler reaches the second “NEXT I:

NEXT WITHOUT FOR IN LINE XXXX
SKIPPING TO NEXT LINE

GOTO and GOSUB Variable Line Numbers

These variable line numbers are not supported by the Compiler.
For example:

GOSUB 1000+X
or
GOTO SORT
is not permitted. The solution to the first type of GOSUB is to use:

ON X GOSuB 1000,1001,

The solution to the second is to use the correct line number
for the variable SORT.

DATA Statements

DATA statements must always be the last statements in your
program. Any executable statements located after a DATA
statement will result in the compile-time error:

ILLEGALLY PLACED STATEMENT IN LINE XXXX

Also be certain to place an END, STOP, or GOTO statement
before the first DATA statement. Failure to do so could result
in the program trying to “execute” the DATA with unpredictable
results!

Memory Between VSEC and VEND
When a compiled program is run, all memory between VSEC
and VEND (see Appendix A) is cleared to zeros, including

strings. Therefore, to be safe you should initialize strings to the
null string. For example, (A$="").

29

GLOSSARY

assembler—

assembler
files—

object file—

run-time
package—

run-time
library—

source file—

run-time
library
equate file—

machine
language
(code)—

A program which converts an assembler file
to machine executable machine-code.

The files produced by PASS 1 of the Compiler,
called ASSEM.SG(n) in this system. All
assembler files are given the file name
ASSEM. with the extension SG1, SG2, etc. for
each successive segment.

The final output of the Compiler which is a
machine-executable program.

A collection of machine code routines utilized
by the compiled BASIC program as it is
executed.

See run-time package.
The BASIC program which is to be compiled.

Memory location directory for the floating
point and integer run-time libraries. The
equate file contains the address numbers
within the run-time libraries of each particular
operational function (such as multiplication,
addition) performed by these files.

Language understood directly by the
computer without the use of an interpreter.

30

APPENDIX A
ATARI BASIC COMPILER Memory Map

The system library loads at $2400; this address was chosen so
that a compiled program would not overlay the RS-232 handler
routines. The user code starts at $3200 and procedes upward.

The following diagram outlines the memory configuration at
run-time of a program compiled with the ATARI BASIC
Compiler.

$FFFF

OS ROM

DISPLAY
RAM

FREE MEM

TEMPORARY
STORAGE

VARIABLE
STORAGE

CONSTANT
STORAGE
DATA
STORAGE
COMPILED
PROGRAM

VEND
$3206 VSEG

$3204
$3202 gggg
$3200

RUN TIME
PACKAGE

DOS, SYSTEM
WORK SPACE

<— VEND + FRE(0) = MEMTOP
<— LINE 99999

<— VEND

<— VSEC

<—CSEC

<— DSEC

$2400

$0

Notes:

The pointers DSEC, CSEC, VSEC, and VEND are located at
addresses $3200, $3202, $3204, and $3206.

31

APPENDIX B

Run-time Library Memory Usage

ZERO PAGE

HEX DEC
$80 128

$81 129
$82, 83 130, 131
$84 132

$85 133

$86 134
$88, 89 136, 137
$8C, 8D 140, 141
$90, 91 144, 145
$92, 93 146, 147
$94, 95 148, 149
$BA, BB 186, 187
$C3 195
$C9 201
$D4-D9 212-217
$EO0-E5 224-229
$F2 242
$F3, F4 243, 244
$FB 251
$FC,FD 252, 253

NON ZERO PAGE

DESCRIPTION

REGISTER SAVE AREA

REGISTER SAVE AREA

GENERAL USE POINTER

CURRENT COLOR FOR PLOTS
I0CB FOR CURRENT 1/0
COMMAND NUMBER FOR XIO CALL
POINTER TO NEXT DATA STATEMENT
STRING POINTER 1

STRING POINTER 2

STRING COUNTER 2

ADDRESS FOR USR CALL

STOP ADDRESS OF ERROR
ERROR NUMBER
PRINT TAB WIDTH

PSEUDO REGISTER 0
PSEUDO REGISTER 1

FLOATING POINT USAGE
POINTER TO INPUT BUFFER

RADIAN/DEGREE FLAG (0=RAD, 6=DEG)
POINTER TO FLOATING POINT NUMBER

$480- $4FF 1152-1279 LINE INPUT BUFFER & FILE NAME

$500- $57F

STORAGE

1280-1407 FLOATING POINT BUFFER

32

APPENDIX C
Internal Numeric Representation

This appendix describes the internal numeric representation
used by the floating point and integer run-time packages.

FLOATING POINT FORMAT

Floating point numbers are stored using the ATARI OS floating
point format. Each floating point number is stored in six
consecutive bytes. The sign of the number and a 64 excess power
of 100 are stored in the first byte. The following five bytes contain
BCD (binary coded decimal) digits, two per byte. This gives 10-
digit floating point precision.

byte 0 1 2 3 4 5

s| ex» |D D|D D|D D|{D D|D D

bit 7 6 0

INTEGER FORMAT

Integers are 16 bits and stored in two consecutive bytes in
memory. The bytes are stored in order of the most significant
byte to the least significant byte. This is the opposite of the order
in which the 6502 processor addresses bytes. This order was
chosen to present a uniform location of the sign bit to the
Compiler and run-time libraries, thus allowing the Compiler to
produce code which is independent of the arithmetic option.

Integer representation:

byte 0 1

bit 15 0

33

COMMERCIAL SALE OF COMPILED PROGRAMS

No royalty fees are required to sell programs compiled with the
ATARI BASIC COMPILER. We do require that you place the
following notice in your program documentation:

This program was compiled using DATASOFT'S BASIC
COMPILER for the Atari.

34

INDEX

A

assembler, the (ASM.OBJ) 29

assembler control statements.......... 14

assembler system error 14,19

B

BASIC cartridge 2

BASIC commands, use of 27

BASIC eXit ..o 8

BASIC filenamet 4,10

BINARY LOAD ..o e e 10

(o]

CompPIler €rrOrS. ..ot e 14
SYS M L e 14
Programmingttt et 16
compile-time 16
FUN-EIME . e 19

COMPILER OPTION ..ot e e e 3

Compiler program diskette 1

Compiler program files..............civvin... 6,9, 11, 12
BASCOMP.OBJo 9, 11-13
ASM.OBY ... 9, 11,12

Compiler supportfiles 6,9, 11, 12
ASSEM.SG1,SG2 9, 11-13
SYSEQU.ABC ... o i 9, 11-13
SYSLIB.FP . 9, 11-13
SYSLIB.INT L. . 9, 11-13

D

DATA statements i i i 29

decimal addressc.iiiiii i e e 8

disk space, compiled program, 13

disk SWaPPING . ..ottt 3,59

DOS OPTION .o e e e 3,9

DO e 8,9, 10

duplicating disks ... 2

F

floating point arithmetic................................ 4,10
FOR I00PS o\ttt e 28
G

GOTO/GOSUB variable line numbers..................... 28
|

integer arithmetic................ooi i, 4,10
L

linereference map ... 7
M

Memory addressSescouvuiinineeeeannnnnnn... 31,32
N

numeric representation i, 33
o)

objectfile ... 4, 10
P

PASS 1 4
PASS 2 . 5
PASS 3 . 6
PASS 4 .. 6
PEEKS ..\ 11
POKES ... 11
Programming @rrorsc.oueuueiinnneeennnnnnnnn... 16

36

R

random (RND) function i i, 10
requirements, system i 2
Run address.ooviiiiniiin e, 8, 20
RUN PROGRAM e 8
FUN-tIME EITOrS ..ttt e 19
run-time errors, tableof 23
S

single-drive system i i 2
size, compiled program ... 24
stringhandlingc i 27
Subroutines i e 25
symbol/data definition statements 14
system errors.......... e e ettt e e e, 14
SYSTEM RESET KeY .. oiiiiiiiiiiiiiiie e 5,6
T

tiMING lOOPS . . oottt e 24
transcendental function o i, 10
transferring files 9
two-drive system e 2,4
v

VSEC, VEND MemMOIY . ..oviiiiit i iiee e 29

37

LIMITED WARRANTY

This software product and the attached instructional materials are sold
"AS 1S," without warranty as to their performance. The entire risk as to the
quality and performance of the computer software program is assumed
by the user. The user, and not the manufacturer, distributor or retailer
assumes the entire cost of all necessary service or repair to the computer
software program.

However, to the original purchaser only, DATASOFT warrants that the
medium on which the program is recorded will be free from defects in
materials and faulty workmanship under normal use and service for a
period of ninety (90) days from the date of purchase. If during this period
a defect in the medium should occur, the medium may be returned to
DATASOFT or to an authorized DATASOFT dealer, and DATASOFT will
replace or repair the medium at DATASOFT'S option without charge to
you. Your sole and exclusive remedy in the event of a defect is expressly
limited to replacement or repair of the medium as provided above. To
provide proof that you are the original purchaser, please complete and
mail the enclosed Owner Warranty Card to DATASOFT.

If failure of the medium, in the judgment of DATASOFT, resulted from
accident, abuse or misapplication of the medium, then DATASOFT shall
have no responsibility to replace or repair the medium under the terms of
this warranty.

The above warranties for goods are in lieu of all other express warranties
and no implied warranties or merchantability and fitness for a particular
purpose or any other warranty obligation on the part of DATASOFT shall
last longer than ninety (90) days. Some states do not allow limitations on
how long an implied warranty lasts, so the above limitation may not apply
to you. In no event shall DATASOFT or anyone else who has been in-
volved in the creation and production of this computer software program
be liable for indirect, special, or consequential damages, such as, but not
limited to, loss of anticipated profits or benefits resulting from the use of
this program, or arising out of any breach of this warranty. Some states do.
not allow the exclusion or limitation of incidental or consequential dam-
ages so the above limitation may not apply to you. This warranty gives you
specific legal rights, and you may also have other rights which vary from
state to state.

The user of this product shall be entitled to use the product for
his/her own use, but shall not be entitled to sell or transfer repro-
ductions of the product or instructional materials to other parties
in any way.

SOFTWARE OPPORTUNITY

Datasoft is offering a unique opportunity to software
authors. Send us your program or program concept for
evaluation. If it is accepted for publication we will enter into a
marketing agreement to sell your product through our Domestic
and International distribution channels.

And the opportunity does not end there. We offer you
something few other publishers can. We call it “Product Roll-
Over.” We have the capability to take a program and transfer it to
other popular microcomputers (Atari, Apple, TRS-80 and NEC).
We can even plan distribution on machines still in development
that we feel will be a large part of tomorrow’s market.

Datasoft works with several large microcomputer
manufacturers on new and exciting projects. We are involved
with many “famous-name” companies entering our industry for
the first time.

So get the most exposure for your programming efforts.
Write us for a free programmer’s package and get a start on a
rewarding future. It's waiting for you today.

Send your name, address and phone number to:

Datasoft Inc.®
Programmer’s Package
9421 Winnetka Avenue
Chatsworth, CA 91311

Or call us at (213) 701-5161 and ask for our Software
Manager.

